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Abstract
High-quality earthquake ground-motion records are required for various applications
in engineering and seismology; however, quality assessment of ground-motion
records is time-consuming if done manually and poorly handled by automation with
conventional mathematical functions. Machine learning is well suited to this problem,
and a supervised deep-learning-based model was developed to estimate the quality of
all types of ground-motion records through training on 1096 example records from
earthquakes in New Zealand, which is an active tectonic environment with crustal
and subduction earthquakes. The model estimates a quality and minimum usable fre-
quency for each record component and can handle one-, two-, or three-component
records. The estimations were found to match manually labeled test data well, and
the model was able to accurately replicate manual quality classifications from other
published studies based on the requirements of three different engineering applica-
tions. The component-level quality and minimum usable frequency estimations pro-
vide flexibility to assess record quality based on diverse requirements and make the
model useful for a range of potential applications. We apply the model to enable
automated record classification for 43,398 ground motions from GeoNet as part of
the development of a new curated ground-motion database for New Zealand.
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Introduction

Ground-motion records contain seismic waveforms but are subject to noise and other
imperfections which may impair their suitability for use in scientific inquiry. Imperfections
can take many forms, and their consequences for various engineering applications have
been a subject of research for decades (Boore and Bommer, 2005; Douglas, 2003). A
ground-motion record for which such noise and imperfections do not compromise the use-
fulness of the record may be considered to be high quality—the implication being that such
a determination is dependent on the intended application (Cauzzi and Clinton, 2013).

Quality screening of ground-motion records is required for applications in many fields,
but in particular for engineering seismology and earthquake engineering. The need is par-
ticularly acute for the development of empirical ground-motion models (Ancheta et al.,
2014; Kishida et al., 2018) and validation of physics-based ground-motion simulations
(Bijelić et al., 2018; Burks and Baker, 2014), both of which demand a large number of
records, and for which performance improvements can be realized through identifying
ever greater numbers of high-quality records (Chiou et al., 2008).

For empirical ground-motion models, the basis of the approach is statistical regression
to observational data (Joyner and Boore, 1993); hence, the accuracy and uncertainty, par-
ticularly in regions of infrequent seismicity or sparse instrumentation, are contingent on
the quantity and quality of the ground-motion records available. Record paucity requires
the inclusion of larger geographical regions and makes the treatment of local or regional
effects more challenging (Atkinson and Boore, 2003).

The credibility of physics-based simulations is dependent on rigorous validation, which
requires a comparison of the simulated ground motions against high-quality observations
(Oberkampf et al., 2004). The challenge of validation has been well explored since the first
ground-motion simulations of Hartzell (1978), and the evolution of the practice has been
summarized by Goulet et al. (2015), who identified validation against observed strong
ground-motion records as an ongoing challenge to the adoption of physics-based methods.

Although record scarcity is a problem in areas with very low rates of seismicity such as
stable craton (Hassani and Atkinson, 2016; Stewart et al., 2020), in most seismically active
regions, such as New Zealand (NZ), there are a large number of records available. The
GeoNet catalog (GeoNet, 2020), which contains records for NZ, has almost 100,000
records from a network of modern well-maintained instruments (Kaiser et al., 2017; Van
Houtte et al., 2017). As the cost of instrumentation decreases (Evans et al., 2014) and the
ability to process and store data increases (Hilbert and López, 2011), the growth rate of
this and other catalogs will continue to increase (Van Houtte et al., 2017). Although
human intelligence is well suited to interpret the complexity of record quality classifica-
tion, manual assessment methods are inherently reliant on human judgment and are there-
fore a subjective and error-prone endeavor. Furthermore, manual assessment methods,
which already provide insufficient bandwidth for the rate at which new records are added,
will be unable to process the quantity of ground-motion records expected to be recorded
in the coming decades (Iervolino et al., 2011). The ability to rapidly and flexibly differenti-
ate between high- and low-quality records is the crux of applying this data to solve chal-
lenges in engineering and seismology.

Machine learning, which excels at interpreting phenomena with high dimensionality or
those which are poorly represented by conventional mathematical functions, is well suited
to the problem of quality classification of observed ground-motion records (Géron, 2019).
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Machine learning approaches are readily scalable and are increasingly being applied within
the geosciences (Karpatne et al., 2018). Kong et al. (2019) identified five fields of seismol-
ogy where machine learning techniques have been applied with promising results: earth-
quake detection and phase picking, earthquake early warning, ground-motion prediction,
seismic tomography, and earthquake geodesy.

Within seismology, seismic detection and phase-picking applications of machine learn-
ing techniques have seen the greatest success (Kong et al., 2019). Ross et al. (2018) con-
ducted seismic phase detection with potential applications to early warning using a
convolutional neural network, which facilitated feature optimization, with a learnable and
hierarchical feature extraction system. Li et al. (2018) used a generative adversarial net-
work trained with 300,000 waveforms as an automatic feature extractor and then trained
a random forest classifier with 700,000 waveforms. Together, the critic and random forest
classifiers were an effective P-wave discriminator which achieved high success rates of
99.2% for true positive (P-wave) and 98.4% for true negative (noise). Yuan et al. (2018)
applied a convolutional neural network to the problem of P-wave picking, again utilizing
automatic feature extraction from the convolutional neural network. Zhu and Beroza
(2019) developed a deep neural network (PhaseNet) for P- and S-wave picking which was
trained on 700,000 three-component labeled waveforms. PhaseNet returns probability dis-
tributions in the time domain of P- and S-wave arrivals, which makes it useful for identify-
ing multiple earthquake records.

Machine learning-based classification of ground motions, which is a problem with high
dimensionality, was done by Perol et al. (2018) who trained a convolutional neural net-
work for both (1) earthquake detection and (2) classification by source region for induced
seismicity in Oklahoma based on a single station signal. They applied supervised classifica-
tion with a training set of 2709 events and 700,039 noise windows and used fingerprinting
and similarity thresholding for feature extraction. Titos et al. (2018) classified volcano-
seismic events using a fully connected deep neural network that labeled records as one of
seven possible classes of isolated volcano-seismic events. The work by Titos et al. (2018) is
noteworthy for having particularly high-dimensional data (e.g., durations ranging from
minutes to months) and relatively little data in total (9332 records in their data set). Due
to these factors, the direct application of state-of-the-art deep-learning architectures (i.e.,
with feature extraction through machine learning) did not have success; instead, they relied
on automatic pre-processing for feature extraction.

An important additional application of machine learning in seismology, not explicitly
addressed by Kong et al. (2019), is for record quality classification; recent effort has been
applied to identifying high-quality ground-motion records specifically for validation of
physics-based ground-motion simulations. Bellagamba et al. (2019) developed a neural
network that was able to accurately classify high- and low-quality records from small-
magnitude (3:5\Mw\5) active shallow crustal earthquakes in the Canterbury and
Wellington regions of NZ using a feed-forward neural network using manually selected
scalar features as input. This study seeks to improve on the work of Bellagamba et al.
(2019) by developing a deep-learning-based model for quality classification which is appli-
cable to records from earthquakes of all magnitudes (e.g., 3:5\Mw\7) and all tectonic
types (i.e., crustal and subduction) and has the flexibility to differentiate between high-
and low-quality records for a range of engineering applications.

In this article, 1096 observed ground-motion records from the GeoNet catalog were
manually labeled and used to develop the model. In the following sections, the architecture
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of the model is presented. Next, the performance of estimations from the model on an
independent testing data set is discussed, the effects of mapping component-level estima-
tions to record-level estimations are investigated, and the performance of the model on
three quality-labeled data sets is compared against the feed-forward neural networks of
Bellagamba et al. (2019). Finally, the performance of the model and its applicability for a
range of engineering and seismological purposes is discussed. Granular details of the man-
ual assessment metrics and the model features are provided in an electronic supplement
along with other supporting materials.

GeoNet catalog of records

NZ is an active seismic region located at a complex tectonic plate boundary that produces
active shallow crustal, subduction interface, and subduction slab earthquakes, among oth-
ers. This study made extensive use of earthquake ground-motion data for NZ which is
available from GeoNet (GeoNet, 2020). Acceleration-time series data were retrieved from
the GeoNet FTP in the form of unprocessed. V1A files. Earthquake source metadata were
retrieved from the flatfile of GeoNet centroid moment tensor solutions (Ristau, 2008).
Acceleration-time series and earthquake source metadata are referred to collectively as the
GeoNet catalog herein and were last updated on 22 November 2020. There are 37,911
three-component records from 1691 earthquakes recorded at 366 GeoNet stations with
complete site and source metadata.

To facilitate the training and development of a deep-learning-based model applicable
for all events of interest, tectonic classifications for all earthquakes in the GeoNet catalog
were desired. Selected earthquakes in the GeoNet catalog which produced ground motions
of significance were previously classified as either crustal, interface, or slab by Van Houtte
et al. (2017). These tectonic mechanisms were determined using a rigorous manual-based
approach which considered hypocentre location and focal mechanism and were adopted
for use in this study. For all other earthquakes in the GeoNet catalog, tectonic mechan-
isms were determined using modified logic from Bozorgnia et al. (2020), presented in
Electronic Supplement A, which considered hypocentre locations relative to the Puysegur
and Hikurangi subduction interface geometries of Hayes et al. (2018) and Williams et al.
(2013), respectively.

Figure 1 shows the tectonic mechanisms assigned to all records in the GeoNet catalog,
and the distribution of records by magnitude, rupture distance, centroid depth, and time-
averaged shear wave velocity in the top 30m, VS30. At shallow depths, the records are
exclusively from crustal earthquakes, whereas, at large depths, the records are either from
slab earthquakes or from other ambiguous origins. The seismogenic depths of the
Hikurangi and Puysegur subduction interfaces are 10� 47 and 11� 30 km, respectively
(Hayes et al., 2018). Records are available for earthquakes from very shallow depths of
less than a kilometer to very large depths up to 375 km; however, most records are from
earthquakes at depths less than 30 km.

Figure 1 demonstrates that the catalog is primarily comprised of small-magnitude earth-
quakes with 4\Mw\5. There is a sharp reduction in the quantity of records from earth-
quakes with Mw\4 and very few records from earthquakes larger than Mw.7. Rupture
distances of 10� 1000 km are well represented in the catalog. Most GeoNet stations are
located on deep or soft soils (Kaiser et al., 2017); consequently, records were usually recorded
on sites with VS30\760 m/s; no records were recorded at sites with VS30.1200 m/s.
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Data processing and labeling

A data set of earthquake ground-motion records with varied magnitudes, rupture distances,
centroid depths, and tectonic mechanisms was compiled for the development (training and
validation) and testing of the developed deep-learning-based model. A record is defined
herein to be the acceleration data for a given earthquake as recorded by a given instrument
and is comprised of at least one, but typically three, orthogonal ground-motion components.
Records for which the P-wave pick was poor—see Manual Assessment of Quality section—
were not included in the development data set. Together, the development and testing data
sets are comprised of 1096 three-component records which were manually labeled with a
quality and minimum useable frequency on a component-by-component basis using the
manual quality assessment framework discussed in the ‘‘Assessment framework’’ section.
The labeling criteria that were used to assemble the component-level quality and minimum
usable frequency labels are discussed in the ‘‘Manual assessment of quality’’ and ‘‘Manual

Figure 1. Metadata distributions for all ground-motion records in the GeoNet catalog: (a) magnitude
and centroid depth; (b) magnitude and rupture distance; (c) VS30 and centroid depth; and (d) VS30 and
rupture distance.
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assessment of minimum usable frequency’’ sections, respectively. The proportions and dis-
tributions of these manually assigned labels for various magnitudes, centroid depths, rup-
tures distances, and VS30 are shown in Figure 2 to provide context for the subsequent
application of the deep-learning-based model to the GeoNet catalog.

Assessment framework

The quality of the multiple components which comprise a ground-motion record is not
always uniform—occasionally, a record is comprised of two high-quality components and
one low-quality component, or vice versa. Previously, the study by Bellagamba et al.
(2019) assessed record quality on an overall record-by-record basis. This approach pre-
sents two main limitations: (1) effective training of the deep-learning-based model is reliant
on well labeled training data and records with inter-component quality disparities labeled
with a single quality label unnecessarily increases the dimensionality of the problem and
reduces the precision of the labeled data and (2) there is no flexibility for the end user to
enforce different minimum quality requirements for the three components.

Similar challenges were created by Bellagamba et al. (2019) due to the treatment of the
minimum usable frequency—the frequency below which the noise content of a record
overwhelms the desired ground-motion signal. In the study by Bellagamba et al. (2019),
the minimum usable frequency was considered in the quality label determination and was
implicitly included in the record quality label. While there are multiple other features that
similarly affect the quality of a record which were also inherently included, such features
are generally universal characteristics that affect record utility regardless of the applica-
tion. This is not the case for the required minimum usable frequency, which, similar to
whether the vertical component is required, can change depending on the application. In
the approach of Bellagamba et al. (2019), there is no flexibility for the end user to adjust
the required minimum usable frequency to reflect the unique demands of their intended
engineering application.

To address these limitations, the manually labeled three-component ground-motion
records were assessed in a component-by-component framework, with both a quality label
and minimum usable frequency label provided for each component: that is, two labels per
component, six labels per record. This treatment affords the end user with the flexibility to
define their own explicit criteria to convert the component quality and minimum usable
frequency estimations from the deep-learning-based model into a single record quality
score, binary high-/low-quality determination (as explored in the ‘‘Effect of mapping on
record estimations’’ section), or weights to be used in a logic tree. The general form of the
quality mapping function is given in Equation 1 where qx, y, z are the component quality
estimations and fx, y, z are the component minimum usable frequency estimations:

Quality = f (qx, qy, qz, fx, fy, fz) ð1Þ

Manual assessment of quality

Component quality was evaluated on a scale from 0 to 1, where 0 corresponds to low-
quality and 1 corresponds to high-quality components. The transition from a label of 1 to
0 represents an overall degradation in component quality with consideration of multiple
criteria which affect component quality. Three transitional quality labels of 0.25, 0.5, and
0.75 were used which correspond to marginally low-, marginal-, and marginally high-
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quality components, respectively; however, the delineations between these transitional
labels are difficult to quantify in absolute terms. A detailed summary of the pre-processing
applied and metrics considered to manually determine component quality is provided in

Figure 2. Manually labeled component quality and minimum usable frequency used for development
and testing of the model (2070 components), sorted by: (a, b) magnitude; (c, d) centroid depth; and (e, f)
rupture distance, respectively. Only components with complete site, source, and path metadata are
shown. (a) Quality by magnitude, (b) minimum usable frequency by magnitude, (c) quality by depth, (d)
minimum usable frequency by depth, (e) quality by distance, and (f) minimum usable frequency by
distance.
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Electronic Supplements B and C; only a high-level discussion of the main features consid-
ered is presented herein.

High-frequency noise exists in the acceleration-time series, sometimes as large amplitude
accelerations visible prior to P-wave arrival. Where present in excess, that is, greater than
about 10% of the peak ground acceleration (PGA), the quality label of the component
was decreased to reflect deterioration in the component quality due to this high-frequency
noise. If the acceleration amplitudes in the pre-event noise exceeded about 30% of the
PGA, then the component was generally assessed to be low quality (i.e., labeled as 0).

Whether the entire seismic waveform is captured within the recorded duration can also
affect the quality of the record, this was sometimes affected by late triggering or early ter-
mination. Late triggering (i.e., missed P-wave arrival) is severely detrimental to the utility
of a record and easily identifiable; therefore, a binary approach to labeling these type of
records was taken where components with late triggering were assigned to be low quality.
As is typical for networks of modern and well-maintained strong ground-motion instru-
ments (Patterson et al., 2007), instances of late triggering are rare in the GeoNet catalog.

A more frequently observed issue, particularly for earthquakes with large rupture dis-
tances, is when records terminate early in the coda. Although undesirable, the consequence
of early termination on quality is continuous in nature: severely truncated components
were labeled as low quality, while less egregious truncations were assigned marginal qual-
ity labels. In general, the coda waves were judged to be sufficiently diminished (i.e., high
quality) if the amplitudes in the tail of the time series were about 15% or less of the PGA
in the component, at above 40%, the component was generally assessed to be low quality.

The slope and shape of the Fourier amplitude spectrum (FAS) were also loosely consid-
ered in assessing component quality. In assembling a flatfile of KiK-net records, Dawood
et al. (2016) required a smoothed low-frequency FAS slope of between 1 and 3. The rup-
ture source model developed by Brune (1970) predicts a low-frequency FAS slope of 2. In
this study, the corner frequencies of the component FAS were not computed; therefore, a
strict assessment of the slope of the FAS was not possible; however, the slope of the FAS
was loosely evaluated in the low-frequency range and slopes of approximately 2 were gen-
erally given a high-quality label.

Seismic instruments occasionally malfunction, and this can cause undesirable features
in the record. Several common instrument malfunctions identified by Douglas (2003) were
observed: for example, baseline offsets, gain discontinuity, low resolution, saturation, and
spikes. It is possible that such components could be salvageable—depending on the
intended engineering application, however, given the relative scarcity of such record com-
ponents, and their compromised nature, this option was not pursued. Components with
instrument malfunctions were labeled as low quality.

Ground-motion records may capture wavetrains from multiple earthquakes, and
instances of multiple earthquakes in a single record were frequently observed in records
from the GeoNet catalog. The important features of these records are the relative accelera-
tion amplitudes and the degree of separation between the wavetrains. The practical impli-
cations of small amplitude well-separated foreshocks or aftershocks are negligible for
almost all engineering applications, and Sabetta and Pugliese (1987) considered the first
earthquake in a record containing multiple records as acceptable if the wavetrain did not
overlap with subsequent P-wave arrivals in the time domain. On the other hand, the pres-
ence of multiple earthquakes of comparable amplitudes is detrimental to the utility of a
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record for most applications. The seismic wave arrival detector, PhaseNet (Zhu and
Beroza, 2019), which was used in this study and implemented in feature extraction for the
model, does not consider such distinctions; therefore, a pragmatic approach in which all
components for records with multiple earthquakes were flagged as having multiple earth-
quakes and labeled as low quality. For some records PhaseNet produced inaccurate P-
and S-wave arrival probability-time series; such records were kept in the testing data set to
maintain impartiality, however, they were removed from the development data set to mini-
mize confusion in the training data.

Manual assessment of minimum usable frequency

Strong ground-motion record components are, to varying degrees, contaminated by noise:
instrument, environmental, societal, and even signal-generated, which limits their usable
frequency range (Anthony et al., 2019; Boore and Bommer, 2005). These sources produce
noise which affects different frequencies, and where noise is outside the frequency range of
the earthquake ground motion, the affected frequencies can be filtered out prior to using
the record in engineering applications. However, if noise overlaps with the earthquake
ground-motion frequencies, then it may not be possible. The best practice is to establish a
frequency range in which the records can be used and to convey this information with the
ground-motion data (Boore and Bommer, 2005).

In general, the GeoNet catalog contains records that were recorded on modern, high-
performance, digital accelerometers with high natural frequencies and sampling rates
(Patterson et al., 2007); therefore, significant high-frequency noise was not common.
However, where encountered, such high-frequency noise generally pervaded the frequency
range of engineering interest (0:01� 10 Hz) to an extent that made determining a maxi-
mum usable frequency impractical. High-frequency noise was therefore considered a criter-
ion in determining the component quality label (see the ‘‘Manual assessment of quality’’
section).

The minimum usable frequency, fmin, is a more nuanced consideration that is affected by
low-frequency noise—often instrumental—and the signal strength at low frequencies. In
order to advise on the minimum usable frequency of a component, each component was
assigned a minimum usable frequency label from 0.01 to 10 Hz. This minimum usable fre-
quency was determined based on the spectral signal-to-noise ratio (SNR) of the smoothed
FAS of the signal portion (time series after P-wave arrival, containing earthquake signal
and also noise) to the smoothed FAS of the noise portion (time series prior to P-wave arri-
val, containing only noise). Smoothing was done with Konno-Ohmachi matrices with a
smoothing bandwidth of b = 40 (Beyreuther et al., 2010; Konno and Ohmachi, 1998). A
minimum SNR 3 is often used as an acceptance criterion (Boore and Bommer, 2005); how-
ever, records with relatively small magnitudes and large rupture distances are being consid-
ered; therefore, a more lenient threshold of SNR 2 was used. If a SNR.2 was not sustained
in the frequency domain, then the minimum usable frequency was labeled as fmin = 10 Hz;
this scenario almost always coincides with a low-quality label, in which case the minimum
usable frequency label is moot. A detailed summary of the metrics considered to determine
the manual minimum usable frequency labels is provided in Electronic Supplement D.

Neural network design and development

High-quality ground-motion records are systematically different than low-quality records,
and with appropriate features that capture these differences, it is possible to estimate the
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quality of a given record. As manual quality assessment is non-trivial and time intensive, a
machine learning approach is well suited to this problem. This section summarizes major
aspects of the deep-learning-based ground-motion classifier model, including feature iden-
tification and extraction, model architecture, and development. Full details are provided
in Electronic Supplements F to H.

Feature identification and extraction

For general quality estimation of a record, a set of 18 scalar features was used. Two special
cases in quality estimation were considered, records with multiple earthquakes and mal-
functioned records, for which an additional six and five features were introduced, respec-
tively. This set of 29 features was complemented by an SNR series comprised of 100 values
computed at evenly distributed (in log space) frequencies from 0.01 to 25 Hz, allowing esti-
mation of the minimum usable frequency and enhanced quality estimation.

P-wave arrival times were needed to divide the acceleration-time series (in the time
domain) into a noise portion (prior to P-wave arrival) and a signal portion (after P-wave
arrival) for the computation of the SNR series and many of the scalar features. The deep-
learning arrival time picker, PhaseNet (Zhu and Beroza, 2019), was used as it was observed
to outperform other phase-pickers which use short-term versus long-term averages, such as
those based on work by Akazawa (2004) or Baer and Kradolfer (1987). An additional use-
ful characteristic of PhaseNet is that it outputs probability-time series for both P- and S-
wave arrivals, which can be used for the detection of multiple earthquakes.

The reliance of the input features on separation into noise and signal portion means that
some records cannot be processed due to limitations such as insufficient pre-event noise,
incorrect P-wave pick, and others. In such cases, the feature extraction for the record fails
and classification is not possible. For the full set of requirements that a record must meet,
see Electronic Supplement F.

The 18 general quality estimation features are mostly based on the ground-motion clas-
sifier by Bellagamba et al. (2019), which measure high-frequency noise, early termination,
late triggering, FAS shape, and SNR over various frequency bands. As estimation is done
per component, this includes an additional feature that indicates the component orienta-
tion (horizontal or vertical).

Instrument malfunction features were computed based on the third and fourth deriva-
tives of position: jerk and snap (Thompson, 2011) and were generally designed to detect
odd acceleration-time series characteristics including baseline offsets, gain discontinuity,
low-resolution, saturation or flatline, and spikes.

Multiple earthquake features were computed from both the P- and S-wave arrival
probability-time series produced by PhaseNet. These multiple earthquake features were
based on comparing the widths and amplitudes of secondary probability peaks to those
associated with the arrival of the primary wavetrain. As PhaseNet operates on three-
component records, these features are identical across a given record, unlike the other
input features which are computed per component.

All scalar features, except the ‘‘is vertical’’ flag, were converted into dimensionless form
via mean and standard deviation (Raschka et al., 2022).
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Architecture

The model has two sub-models (see Figure 3) which correspond to the two different input
types: the scalar input features and the SNR series. The scalar sub-model consists of 2 fully
connected layers, each with 32 units.

Feature extraction of the SNR series was done using a set of two 1D convolution layers
with L2 regularization (Raschka et al., 2022), each followed by a max-pooling layer with a
pooling size of 2. The extracted feature series are then passed through 3 layers of bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) cells to produce a context vector of size 64.

The output of both of these sub-models is then concatenated and passed through a fully
connected layer, followed by an additional fully connected layer per output. All fully con-
nected hidden layers used the SELU activation function (Clevert et al., 2016; Klambauer
et al., 2017), L2 regularization (Biewald, 2020), and were initialized using the
‘‘LeCunNormal’’ approach (LeCun et al., 2012). For the full model hyperparameters, refer
to Electronic Supplement H.

The model outputs the quality score, ranging from 0.0 (worst) to 1.0 (best), the mini-
mum usable frequency (0.01–10.0), and a multiple earthquake flag (True or False).

Model training

The model was trained via back-propagation using the Adam optimizer (Kingma and Ba,
2017) with a batch size of 32 samples (components) and an initial learning rate of 1e� 3,

Figure 3. Model architecture: scalar input neural network (top left); SNR series neural network
(top right); and concatenation and fully connected neural network with output layers.
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which was reduced by a factor of 0.5 on plateaus (based on the validation loss). In addi-
tion, early stopping and storing of the best model weights (based on validation loss) were
used during training to prevent over-fitting (and reduce training time), with the best model
weights restored at the end of training. The loss functions used for each of the outputs were
the Huber loss (Huber, 1964) for the quality score and the minimum usable frequency and
the binary cross-entropy for the multiple earthquake flag. To account for the fact that the
minimum usable frequency has no meaning for low-quality records, it was weighted such
that the loss goes to 0 as the ‘‘true’’ manually labeled component quality goes to 0. The
combined loss is then computed as a weighted sum, with the weights chosen manually to
account for the difference in scale and importance of the outputs. For full details on the
loss function used, see Electronic Supplement H.

Results

In this section, the accuracy of the component-level estimations from the model is assessed
using the independent test data set, then the distribution of component-level estimations
for the entire GeoNet catalog is discussed. The effect of mapping on rates of high-quality
record-level quality determinations within GeoNet is first explored, and then observations
from this exploration are used to inform an attempt to reproduce the quality labels of three
quality-labeled data sets from other studies.

Component estimation performance

To evaluate the performance of component quality and minimum usable frequency esti-
mations from the model, a testing data set of 540 manually labeled components was used
(180 three-component records). This labeled data was not used for training or validation
of the model, nor was it curated to remove poor PhaseNet results; therefore, it represents
an unbiased test of the model performance. Performance was assessed using a residual
analysis framework, where the component quality and minimum usable frequency estima-
tion residuals were computed using Equations 2 and 3, respectively:

Dq = qtrue � qestimated ð2Þ

Df = ln(fmin
true)� ln(fmin

estimated) ð3Þ

The bias of Dq was close to 0 for all tectonic mechanisms in the testing data set, and the
bias of Df (determined only for components with qtrue ø 0:75) indicates that the minimum
usable frequency was consistently over-estimated (i.e., fmin

true is lower). The bias of Dq is
smaller than that of Df which reflects the increased importance (i.e., optimization weight)
placed on quality estimations during model development (see the ‘‘Model training’’ sec-
tion). Neither set of residuals correlate strongly with metadata properties of the records
such as magnitude, centroid depth, or rupture distance, as shown in Figure 4.

Component estimations for GeoNet

When applied to the complete GeoNet catalog, quality and minimum usable frequency
estimations were obtained for all components (Figure 5). As shown in Figure 5a, c, and e,
65% of components are estimated to have quality greater than 0.8 and only 13% of
records components are assigned low-quality scores below 0.2; this indicates that the
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Figure 4. Estimated component quality and minimum usable frequency residuals for labeled crustal,
interface, and slab ground-motion records in the test data set: (a, b) magnitude; (c, d) centroid depth;
and (e, f) rupture distance, respectively. The mean residual is shown as the large circle marker, and linear
regression line of best fit is shown for each tectonic type within each panel. (a) Quality residual by
magnitude, (b) minimum usable frequency residual by magnitude, (c) quality residual by depth, (d)
minimum usable frequency residual by depth, (e) quality residual by distance, and (f) minimum usable
frequency residual by distance.
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Figure 5. Estimated component quality and minimum usable frequency for all ground motions (130,194
components) in the GeoNet catalog by: (a, b) magnitude; (c, d) centroid depth; and (e, f) rupture
distance, respectively. Only components with complete site, source, and path metadata are shown. (a)
Quality by magnitude, (b) minimum usable frequency by magnitude, (c) quality by depth,
(d) minimum usable frequency by depth, (e) quality by distance, and (f) minimum usable frequency by
distance.
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catalog is comprised of predominantly high-quality record components. Similarly, as
shown in Figure 5b, d, and f, the majority of components are observed to have relatively
low minimum usable frequencies: 35% of components are estimated to have minimum
usable frequencies below 0:1 Hz and only 7% of records components are assigned mini-
mum usable frequencies above 1 Hz.

The component estimations were uncorrelated with site properties such as VS30 and
most earthquake source characteristics including tectonic mechanism and centroid depth
when controlled for constant rupture distance. As was expected, the proportion of record
components with high qualities and low minimum usable frequencies decreases with
increasing rupture distance due to increased attenuation of seismic waveforms to small
amplitudes which are less prominent among background noise.

For a given rupture distance, the proportion of high-quality components is greater for
larger magnitude earthquakes; however, because such large magnitude earthquakes are
able to be recorded at greater rupture distances, this effect is diminished when considering
all record components for a given magnitude, as presented in Figure 5. However, the mini-
mum usable frequency has significant dependence on magnitude even without controlling
for rupture distance; at large magnitudes, the proportion of components with very low
minimum usable frequencies is relatively large; this is suspected to be the result of corner-
frequency scaling with magnitude.

Effect of mapping on record estimations

There are many possible ways in which the component-level quality and minimum usable
frequency estimations from the model can be implemented by engineers and seismologists.
One possible application is converting the component-level estimations into a binary
record-level quality determination. In this section, the effects of various possible
approaches are explored considering all records in the GeoNet catalog (see ‘‘GeoNet cata-
log of records’’ section), which also aids in the subsequent comparison of the model pre-
dictions against prior data sets that have been compiled.

In engineering and seismological applications, the most common combinations of com-
ponents used are as follows: (1) two orthogonal horizontal components only and (2) all
three orthogonal components, and hence these are the combinations that will be consid-
ered. Mapping functions are used in this approach to combine the two or three
component-level estimations into a single quality and minimum usable frequency value for
each record. In this examination of the effect of mapping, the mapped record-level quality
and minimum usable frequency estimations were then considered against a range of possi-
ble acceptance thresholds; that is, combined acceptance thresholds which considered qual-
ity and minimum usable frequency estimations simultaneously were not considered.

Five possible component mapping functions were considered (Figure 6), in order of
smallest to largest resultant, these are as follows: (1) minimum (appropriate for quality
only), (2) harmonic mean, (3) geometric mean, (4) arithmetic mean, and (5) maximum
(appropriate for frequency only). The minimum is not appropriate for mapping the mini-
mum usable frequency estimations because it is not realistic to assess a record based on
the best-performing component only; similarly, the maximum is not appropriate for map-
ping the quality estimations. Of these mapping functions, either the minimum or arith-
metic mean is most appropriate for quality, and the maximum or geometric mean is most
appropriate for minimum usable frequency. All three types of means are included as
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generic functional examples to illustrate the sensitivity of the binary quality determination
to the mapping function form.

The tendency of the mapping function to produce either small or large record-level val-
ues influences the fraction of records determined to be high quality. Mapping functions
that produce larger values are less stringent for assessing record quality, and the opposite
is true for minimum usable frequency. This is because mapped quality is compared against
an acceptance threshold which must be exceeded in order for the record to be determined
to be high quality while the mapped minimum usable frequency is compared against an
acceptance threshold which it must be below.

As shown in Figure 6a, the majority of records have component qualities above 0.9;
below this threshold, the decline in high-quality records is approximately linear for all
mapping functions. Which mapping function is used has little effect on two-component
records and only a minor effect on records with a vertical component. Using the minimum
as opposed to the arithmetic mean results in approximately 10–20% fewer high-quality
records for quality thresholds between 0.1 and 0.9.

Figure 6b shows the effect of the functional form of the component minimum usable
frequency mapping for records satisfying a quality threshold of 0.9 based on the arithmetic
mean of the component estimations—the minimum usable frequency is moot for low-
quality records. The general effect of minimum usable frequency mapping is similar
regardless of this quality threshold, but the asymptote at high-frequency thresholds differs
depending on the fraction of records that meet the specified quality threshold (i.e., 0.9 for
this example). In the limit case of a quality threshold of 0, the asymptote would occur at
1. Figure 6b illustrates that there are few records that satisfy minimum usable frequency
requirements below 0:1 Hz; most records fall between 0.1 and 1 Hz. The fraction of

Figure 6. Fraction of records in the GeoNet catalog which are determined to be high-quality using
different mappings of component-level (a) quality and (b) minimum usable frequency estimations and
acceptance thresholds: (a) effect of quality mapping and acceptance threshold with no minimum usable
frequency acceptance threshold enforced and (b) effect of minimum usable frequency mapping and
acceptance threshold with a quality threshold of 0.9 enforced on the arithmetic mean of the component
quality estimations.
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accepted records begins its plateau at approximately 1 Hz indicating that very few esti-
mated component minimum usable frequencies are between 1 and 10 Hz. Additional plots
illustrating the effect of mapping forms on the fraction of high-quality records in the
GeoNet catalog are provided in Electronic Supplement J.

Performance on quality-labeled data sets

To assess the performance of the model at classifying records for various engineering
applications, three quality-labeled data sets compiled from other studies (Table 1) were
considered. The metadata distributions for records in these data sets are shown in Figure 7.
These data sets were comprised of records with binary high-/low-quality labels which were
manually determined based on various component quality and minimum usable frequency
criteria.

The first data set, GMS-B19, contains 7059 high- and low-quality small-magnitude crus-
tal records labeled based on their suitability for ground-motion simulation validation. The
quality determination of these records was made for validation of physics-based ground-
motion simulation toward its use in probabilistic seismic hazard analysis (Bellagamba
et al., 2019); therefore, only the quality of the horizontal components was considered and
an approximate minimum usable frequency of 0:3 Hz was enforced for each horizontal
component as a requisite for a high-quality record label.

The second data set, FAS-V17, contains only high-quality records from all sources
screened to produce the three-component FAS database from Van Houtte et al. (2017).
Records included in FAS-V17 were required to have a minimum usable frequency of 1 Hz
or lower from all three components.

The third data set, RHA-V17, contains only high-quality records from all sources rec-
ommended for use by engineers in three-dimensional response history analysis of structures
(Van Houtte et al., 2017), which is a subset of the records in FAS-V17. Records included in
this data set were required to have three high-quality components each with a minimum
usable frequency of 0:1 Hz or lower.

For performance assessment of the deep-learning model on these quality-labeled data
sets, the component estimations (six per record) from the model needed to be mapped into
a single binary high/low-quality decision to match the form of the quality labels in the
quality-labeled data sets. As discussed in the ‘‘Effect of mapping on record estimations’’
section, the choice of the mapping function is non-trivial and can have a significant effect
on the binary high-/low-quality record-level estimations. For the performance comparison
in this section, an approach thought to be similar to that which might be taken by an engi-
neer or seismologist was adopted.

Table 1. Summary of quality-labeled data sets used for performance assessment

Quality-labeled
data set

Number
of records

Tect.
mech.

Moment
mag. Mw

Centroid
depths (km)

Components
considered

Req.
fmin

High-quality
portion

H1 H2 V (Hz)

GMS-B19 7059 Crustal 3.5–5 3–20 � � s 0.3 52%
FAS-V17 3494 All 3.5–7.8 2–281 � � � 1 100%
RHA-V17 669 All 5–7.8 2–156 � � � 0.1 100%
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For each data set, only the quality and minimum usable frequency estimations for the
relevant components were considered, i.e., the vertical components in GMS-B19 were
ignored. For all data sets, the arithmetic mean of the quality estimations of the considered
components was compared against an acceptance threshold of 0.5. The binary high-/low-
quality estimations for the records were not sensitive to the selection of this threshold,
because most of the estimated component qualities are close to either 0 or 1 (Figure 5a, c,
and e). The geometric mean of the minimum usable frequency estimations was compared
against the minimum usable frequency criteria specific to each data set (Table 1). It was
found that comparing means of the component-level estimations has the desirable effect
of averaging out component-level estimation residuals for a given ground-motion record
(the component residuals for a given record are only partially correlated).

As performance benchmarks, two neural networks developed for small-magnitude crus-
tal earthquake records by Bellagamba et al. (2019) were also considered: (1) Canterbury
neural network and (2) Canterbury-Wellington neural network. The Canterbury-
Wellington neural network, which was developed using a more geographically diverse set

Figure 7. Metadata distributions for ground-motion records in the quality-labeled data sets and those
manually labeled on a component-by-component basis for the development and testing of the model:
(a) magnitude and centroid depth; (b) magnitude and rupture distance; (c) VS30 and centroid depth; and
(d) VS30 and rupture distance.
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of records, was found to perform better than the Canterbury neural network for all three
data sets; therefore, only the estimations of the Canterbury-Wellington neural network are
presented herein. The assessment criteria of the Bellagamba et al. (2019) models are not
strictly aligned with the labeling of FAS-V17 and RHA-V17 data sets. However, the
Canterbury-Wellington model is still used as a benchmark since guidance for its use in
applications outside of ground-motion simulation validation is not provided in that study.
Inferences related to this misalignment are expanded upon in the following interpretation
of results.

Various performance metrics were considered to evaluate the performance of the
Canterbury-Wellington neural network and the deep-learning model in this study on the
binary record-level estimations in the three quality-labeled data sets and mapped testing
data set. These included recall, precision, specificity, accuracy, F1 score, and weighted
Youden index (Jw) (Li et al., 2013; Youden, 1950), the formulations for which are given in
Electronic Supplement I. These are all measures of classification correctness and are based
on comparing numbers of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) in a labeled data set, where w is the ratio of all TP and FN to the
total number of records. For the FAS-V17 and RHA-V17 data sets, which contain only
high-quality records, only the accuracy, recall, F1 score, and weighted Youden index pro-
vided meaningful measures of performance. The accuracy, taken as the percentage of cor-
rect estimations, was found to be a simple yet effective metric for comparison across the
data set domains and is considered in more detail across the domain of magnitudes and
rupture distances in Figure 8.

The Canterbury-Wellington neural network was developed using the quality-labeled
records in the GMS-B19 data set as training data; therefore, although its selection criteria
are properly aligned with the quality-labeled records in this data set, it has an artificial
advantage because it was trained on this data, whereas the model was not. As shown in
Figure 8, the Canterbury-Wellington neural network performed very well on this data set
for all rupture distances and magnitudes.

For FAS-V17, the minimum usable frequency requirements (1:0 Hz) are not compati-
ble with the assessment criteria for the Canterbury-Wellington neural network, which
required the minimum usable frequency to be lower than roughly 0:3 Hz. Therefore, the
Canterbury-Wellington neural network applies too stringent a requirement on the mini-
mum usable frequency and estimates many of the ground-motion records to be low qual-
ity despite being manually labeled as high quality. In other words, a record with a
minimum usable frequency between approximately 0.3 and 1.0 Hz would likely be consid-
ered low quality by the Canterbury-Wellington model but is labeled as high quality within
the FAS-V17 assessment criteria.

For RHA-V17, which contains records usable to 0:1 Hz, the Canterbury-Wellington
neural network is too lenient in its assessment of the minimum usable frequency. The
Canterbury-Wellington neural network appears to perform well on this data set, but this
apparent performance is inflated because all ground motions are high quality and likely
on the very high-quality end of the spectrum. Therefore, the results shown only indicate
the accuracy in predicting very high-quality records. It does not provide any indication of
the accuracy in predicting low-quality records. Although the performance here is generally
good, the accuracy of the estimations can be seen to decrease for records in this data set
from large magnitude or large rupture distance earthquakes (Figure 8e)—i.e., conditions
for which it was not developed.
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Figure 8. Estimation accuracy (% correct), by magnitude-rupture distance bins, of the Canterbury-
Wellington neural network (CW) and the model in this study on the three quality-labeled data sets:
GMS-B19; FAS-V17; and RHA-V17. Records are colored by the average estimation accuracy in each bin,
and N is the number of records. (a) CW on GMS-B19, (b) the model on GMS-B19, (c) CW on FAS-V17,
(d) the model on FAS-V17, (e) CW on RHA-V17, and (f) the model on RHA-V17.
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The implicit quality criteria upon which the Canterbury-Wellington neural network was
developed (i.e., that of GMS-B19 in Table 1) do not align with the selection criteria of the
FAS-V17 and RHA-V17 data sets. This highlights the advantage of the model developed
in this study’s flexible mapping approach based on component-level quality and minimum
usable frequency estimations.

From Table 2, it can be seen that the model in this study performs significantly better
than the Canterbury-Wellington neural network of Bellagamba et al. (2019) on these two
data sets for all metrics considered. From Figure 8b, d, and f, it can be seen that the
mapped record-level estimation accuracy of the model is high for all magnitudes and rup-
ture distances in all three data sets. Performance is the best for large magnitudes and small
rupture distances and generally degrades for smaller magnitudes and larger rupture dis-
tances which are conditions that are likely to produce records of marginal quality and for
which earthquake ground-motion records are of less utility in most engineering
applications.

The performance of the model, as quantified by the metrics in Table 2, is high for all
data sets. Relative variations of recall, precision, and specificity would occur for different
approaches to binary record-level mapping, of which there are many; therefore, too much
emphasis should not be placed on any one of these metrics. Similarly, although the binary
record-level mapping was intended to mimic the logic applied by the authors of each of
the three quality-labeled data sets, some mismatch is inevitable and so it is expected that
there would be estimation errors.

For an additional comparison of independent data, the testing data set was considered
with mapping to record-level estimations, and the performance of this data set is given in
Table 2. The criteria (i.e., quality and frequency thresholds and components considered)
for labeling the quality of records in GMS-B19, for which the Canterbury-Wellington
neural network was calibrated, were applied to the component-level labels in the testing
data set (the component-level estimations from the model were also mapped using the
same logic). This mapped quality-labeled data is consistent with the selection criteria of
both the Canterbury-Wellington neural network and the model, and was not used in the
development of either; therefore, this comparison gives the best indication of the relative
performance between the two. The model performs better than the Canterbury-Wellington
neural network on the independent testing data set for earthquakes of all magnitudes, tec-
tonic mechanisms, and rupture distances as indicated by the metrics which measure the
overall performance (accuracy, F1 score, and weighted Youden index), although the preci-
sion and specificity are slightly worse.

Table 2. Estimation performance, as quantified with various metrics, of the Canterbury-Wellington
neural network (CW) by Bellagamba et al. (2019), and the model in this study (M) on the testing data set
and three quality-labeled data sets. All metrics range between 0 and 1, where 1 indicates perfect
performance

Data set Recall Precision Specificity Accuracy F1 score Jw

CW M CW M CW M CW M CW M CW M

Testing data 0.58 0.83 0.98 0.96 0.94 0.84 0.64 0.83 0.72 0.89 0.28 0.66
GMS-B19 0.85 0.94 0.95 0.75 0.95 0.62 0.9 0.8 0.9 0.83 0.79 0.59
FAS-V17 0.84 0.95 — — — — 0.84 0.95 0.91 0.97 0.68 0.9
RHA-V17 0.88 0.95 — — — — 0.88 0.95 0.94 0.97 0.77 0.9
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Conclusion

A deep-learning-based model was developed to provide an automated method of ground-
motion record quality assessment which can determine the quality of a ground-motion
record for a wide range of engineering applications. The model provides accurate quality
and minimum usable frequency estimations on a component-by-component basis for
ground-motion records from small- and moderate-magnitude earthquakes of all tectonic
classifications for various rupture distances and site conditions; although it was developed
with NZ ground motions, it is expected to extend well to other regions. Furthermore, it
can effectively identify record components with instrument malfunction or multiple earth-
quake wavetrains and interprets such components as low quality.

If desired, mapping of component-level estimations to a record-level quality determina-
tion can be tailored to satisfy the demands of specific applications, such as whether a verti-
cal component is required and what minimum usable frequency is needed. Adjustment of
quality and minimum usable frequency thresholds, and the manner in which they are
applied, allows for varying degrees and dimensions of selectivity to be enforced.
Alternatively, the component estimations can be used for other purposes such as to estab-
lish weights in an analysis logic tree or to evaluate the performance of various recording
stations and inform maintenance activities. The inherent flexibility of the model makes it
applicable to a range of engineering applications and the manner in which the component-
level estimations may be used is left as flexible as possible to encourage its use by engineers
and seismologists at their discretion.

In the future, the model is expected to be used for classifying new ground-motion
records as they are added to GeoNet and other global catalogs; these are expected to
increase in number as more stations (including low-cost alternatives) are installed. The
model is well suited to this demand; however, it has several limitations. Because the model
relies significantly on PhaseNet, its performance is bounded by PhaseNet and the model
performs poorly where PhaseNet performs poorly. The model is only applicable for three-
component records, or for one-component records where the component is in the vertical
direction. The feature computation takes significant computational time and is limited to
records that satisfy requirements of duration, timestep, and P-wave arrival. The data set
used for the model development is relatively small and contains few records for large mag-
nitudes and short rupture distances; future studies could implement data augmentation
techniques or consider global catalogs to expand the data set. Components of each record
were handled independently in the model; however, future studies could consider the corre-
lation of components within each record. As the capability of machine learning continues
to improve, other deep-learning architectures, such as one that uses the entire acceleration-
time series as input rather than extracted features, could be implemented and may be able
to further improve performance.

Resources

The implementation of this quality classification tool has been done in Python 3.6 using
the following main libraries ObsPy (Krischer et al., 2015) to process ground motions and
PhaseNet (Zhu and Beroza, 2019) for P- and S-wave arrival and multiple earthquake detec-
tion. Keras (Chollet et al., 2018) and TensorFlow (Abadi et al., 2016) were used to create
and train the model, along with NumPy (Harris et al., 2020), SciPy, and Pandas (Virtanen
et al., 2020) for general scientific computing. Matplotlib (Hunter, 2007) and scikit-learn
(Pedregosa et al., 2011) were used for plotting and general machine learning functionality,
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respectively. Ground-motion records were obtained from the GeoNet file transfer protocol
(GeoNet, 2020). The model is available as a GitHub repository: https://github.com/ucgm-
sim/gm classifier.
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