Simulation-based ground motion prediction of historical and future New Zealand earthquakes and consequent geohazard impacts

Brendon Bradley, University of Canterbury, New Zealand

Context

Empirical

Physics-based

Ground motion

VS

Daily High and Low Temperature in May

Weather

VS

Ingredient 1. Seismic source

Fault roughness (Shi and Day)

- Fractal complexity in source modelling
- Uncertainty analysis to account for different source representations

Ingredient 2. 3D crustal model

Sedimentary basins critical for adequate simulation prediction

Ingredient 3. Surficial site effects

- Difficulty in modelling
 - regional effects (10-100km scale)
 - site-specific effects (1-10m scale)
- Modelling site response via:
 - Vs30-based empirical factors
 - Explicit site response via wave propagation analysis

Step 1: 3D viscoelastic simulation

2010-2011 Canterbury and 2016 Kaikōura earthquakes

2010-2011 Canterbury and 2016 Kaikōura earthquakes

 All simulations utilize the same methodology and input parameters, with only rupture models and simulation domain varying between events

Ground motion simulation

[Video: https://www.youtube.com/watch?v=j9c-Fwhaigc]

Observed ground motions

Observed and simulated motions

Bradley et al (2017)

Observed and simulated response spectra

Simulation residuals

Vibration period, T (s)

Validation

 Validation is critical for demonstrating the (potential) superior performance of simulations over conventional empirical models

144 Mw3.5-5.0 earthquakes recorded at 46 stations (Lee et al. 2017)

Systematic effects from validation

Lee et al. (2018)

Uses of simulations

Validation and utilization guidance

Seismic hazard using simulated ground motions

There are ~500 major mapped faults in NZ Simulated ruptures considering uncertainties (~3,200 ruptures modelled in v18.5)

Uncertainties in source and crustal models

Source representation

Crust representation

Seismic hazard using simulated ground motions

Simulations stored on a grid of ~20,000 spatial locations

Software workflow and Integration

Hazard maps

Example: PGV, 2% in 50 years

Logic trees for model uncertainty

 Simulation-based ground motion prediction incorporated in logic tree along with empirically-based predictions

Predictive capability of modelling alternatives drives model

weight

Predictive capability over time

On-demand simulation 'data-as-a-service'

 How engineers/other users will obtain desired results, e.g.: SeisFinder 2017 demonstration prototype [video: https://www.youtube.com/watch?v=Aaiy a3lbdY]

From ground motion to geohazards

Applied to distributed infrastructure

Thank you for your attention https://sites.google.com/site/brendonabradley/

Leveraging exponential technologies

Measurements: doubling every 4.4 years

Baker, Bradley, Stafford (2018, Cambridge Press)

Leverages exponential technologies

Computing hardware: Doubling every <2 years
+ increases in utilisation efficiency

Leverages exponential technologies

Software: Machine Learning (Neural Nets)

